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I PROPOSE in the following paper to investigate some new methods for summing
various kinds of series, including almost all of the more important which are met
with in analysis, by means of definite integrals, and to apply the same to the evalaa-
tion of a large number of definite integrals. In a paper which appeared in the Cam-
bridge and Dublin Mathematical Journal for May 1854, I applied certain of these
series to the integration of linear differential equations by means of definite integrals.
Now Professor BooLe has shown, in an admirable memoir which appeared in the
Philosophical Transactions for the year 1844, that the methods which he has invented
for the integration of linear differential equations in finite terms, lead to the summa-
tion of numerous series of an exactly similar nature, whence it follows that the com-
bination of his methods of summation with mine, will lead to the evaluation of a large
number of definite integrals, as will be shown in this paper. It is hence evident that
the discovery of other modes of summing these series by means of definite integrals
must in all cases lead to the evaluation of new groups of definite integrals, as will
also be shown in the following pages. I then point out that these investigations are
equivalent to finding all the more important definite integrals whose values can be
obtained in finite terms by the solution of linear differential equations with variable
coefficients. Again, there are certain algebraical equations which can be solved at
once by LAGraNGE’s series, and by common algebraical processes; the summation
of the former by means of definite integrals affords us a new class of results, which I
next consider. A continental mathematician, M. Smaasgn, has given, in a recent
volume of CreLLE’s Journal, certain methods of combining series together which
give us the means of reducing various multiple integrals to single ones. The series
hitherto considered are what have been denominated ¢ factorial series”; bat, lastly,
I proceed to show that analogous processes extend to series of a very complicated
nature and of an entirvely different form, and for that purpose sum by means of
definite integrals certain series whose values are obtained in finite terms in the
< Exercices des Mathématiques’ by means of the Residual Calculus. The total result
will be the evaluation of an enormous number of definite integrals on an entirely
new type, and the application of definite integrals to the summation of many intri-
cate series.
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158 MR. W. H. L. RUSSELL ON THE THEORY OF DEFINITE INTEGRALS.

Let us first consider the series whose general term is
a(a+l)...(a+n—l) . ol (o + l)...(a’+n—1) . x"
BB+1) .. (Btn—1) BE+ 1) (B +n—1) 1.2.3...n

Its sum will be found to be

s I'p 1 1ol — —a— I—ol=1 cave.
1»?@—@TWPW—MV£5L"”lz L (1= (L =R)P e dud.

Next, if we consider the series, whose general term is
1 ar

BB+1)..(B+n—1) BF+1)..(F+n—1) 1.2.3...n°

we find for the sum

Fﬁ ¢ . _T_é’_ .o 5‘ y Ei(z—kzlm) g miz)(liizl)...
I —0 o/ —® 1+ZZ) (1+izl)3l"'

We may easily reduce this to a possible form by putting z=tan ¢, '=tan ¥, &c. If
the series to be summed is of the nature of both the kinds of series we have been
discussing, we must combine the two methods of summation together.
Now consider the following differential equation :
u+o(D)e“u=0, where ¢*=ux.
This equation can always be satisfied when the factors in the denominator of p(D)
are real and unequal by a series of the form

g By el DBE+L)y(y+1)...
u=1-- ’BI T x—+ '(a+1)ﬁ'(ﬁ'+l) (7+1) 1. 2+ &e.

We shall suppose that the number of the quantities a, 8, y &ec. is always less than
the number of the quantities &', 3, ¢' &c., and, for the present, that the magnitude of
, 3, v &c. is always less than that of &', ' &c., each to each. Then the sum of this
series by means of definite integrals can always be found by the preceding theorems.
Now Professor BooLe has given, in the memoir I have before mentioned, the con-
ditions which are necessary in order that the equation u4¢(D)s“u=0 may be inte-
grable in finite terms, which are therefore the conditions that the sum of the above
series, and consequently the value of any definite integral equivalent to it, may be
found iu finite terms. I shall now give some instances of the evaluation of definite
integrals by the application of these principles. Let us consider the symbolical equa-
ion 2

Ho (—D——"'DE—(]Z; 4)__() where ¢=ux,

and assume for its solution

2%
V= (D1)[D=2) 2)_0 so that u=(D—2)v,
whence v=C " Cyre™"".

Hence u=C,(p’ — )"+ Cy(pr’+a)e ™ 3
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and we find from this the series

2 2M. ]
ula?

Whence we find, putting w for 5 57

{14—5 ~1 §2+5 7 19 24+ &c} G 3{((wc —a)e (w4 a)e ™}

yido\/cos 0 ¢’ cos (p: sin 0 cos 0+%—tan 0)

E}

&/ {‘)‘weg«/" \/‘U;E%/”‘-I-Q{bﬁ 2N/M+\/{b£-—2N/y.}

= out
Next consider the symbolical equation
(D--1)(D—3)(D—5)u—p**“u=0, where ¢*=x;
and assume as the transformed equation
(D—1)(D—=2)(D—3)v—p’s*v=0.

Then u=(D—2)v,
and v=C,xs""+ C,we"* + Cae* ;
where 1, «, 3 are the three cube roots of unity.
Hence u=C,(pa® — x)e" 4+ Cyapa® —2)e** 4 Cy(Bua® — )™,
We must determine C,, C,, C, according to the series we have to sum.
8 414 v =3 41—V =3
If =g O=— _(._3#__), C,=— 4,,(,,_?;?*_7_),
we find
5 1 wda® 1 - 528 b
gy s e
33 3333
2. 2 V3 >
———(y,x — )& +3-3 (2y»m +a)e 3 cos wp,m i

§—1/—§— xXe~ 2 b]l’l L {IJJ?

3t J
Whence y y d0d¢sucosecos¢cos(0+q)) coS FHCOS§®

cos{y, cos 0 cos ¢ sin (049) —|—§.—+§?— (tan 0+tan@)}
3 -3—- 3V3 Vi
=3 4/352 Vit {(3\//" )6V 4 (68/ 1) 2 cos: ~_§_J‘

e 3~/3«/[J«}

z 2

159

L)

(IL)
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3333

1 w28 _ R
Also tl+7 +7 081, E "'&"'}

e

40 40 < 3
=34 (wa®—2z)e — 5—? (pe—2)¢"'% cos ﬁ@x

%911%@( m-FQ)g 251n 11-@%
J

m k.

— R -

2 2 L 2
“Ihence 5‘ . . d0d¢eucosecosq5cos(0+®) cos? 4 cos® @

-5 v

cos{p cos J cos ¢ sin (0—|—gb)+z;+%f— (tan +tan go)}

8% . 3 ~/3 4
++/3(3/ w+2) 3" sin =¥ “}
Again, let the symbolical equation be
D=-1)(D—2)(D—5)u— p*(D—3)s*u=:0,
and let the transformed equation be :
(D=1)(D—2)p—p’ev=(D—1)(D—2)V,

(I1L.)

whence u=(D—3)w, 0=(D—-3)V.
Hence we find V=Ca?
and v=C 24 Cxe"*+ C,as~",
whence u=—2C 24 C (2’ — 22) "+ C;( — pa® — 2x)s ™+ ;
we determine C,, C,, C, according to the series we have to sum. Hence we find
2 2 4,4
{Ll +§’; o +E.Z.§.z1; b+ &c.}:24f+ i (' —20) — 2 (w2 22)e7. (IV.)

Hence we have
j‘ dodv v(1—v)~% cos 8¢ cos (uwv sin 0 cos §+30 — tan 0)
g
2w ™ - - _ -
= +m(p— 1)5w”—,‘,,é;(\/ﬁa+ 1)e*ve.

By a similar method we find

1202

e = e sy 20 ), (v,
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whence we nave

y dfdv v(1 —v)} cosd ¢ cos (wo sin 4 cos -+ 30— tan d)
0

27r

OV E=3)E raV/pt8)e

It is to be part.lcularly remarked, that we may in many cases simplify the final
results, which we obtain by means of these summations, by the use of the theorem

T 212 T = (20) T i,

Again, let (D—=1)(D—3)(D—5)u—u(D—2)(D—4)u=0,
and assume as the transformed equation
(D—1)v— pefo=0.

Then u=(D—-2)D—4)v

| 0=(D—2)(D—4)V,

whence V=As4+Ba",

and v=C, (w2’ — 2)¢*+C,*+Cyx,

whence u =Cl(ﬁw“—3p4m2+3x)e"“+02w3+ Cyz,

where the constants must be determined by comparison of this expression with the
series to be summed. Thus we have

2.4 2.3.4.5 2
{1"'3 54+ 35 5.6 };wz“‘ &e. }“‘W(f’“’” — 3pa*3a) — 4 +— - (VL)
H " :«),W,»d,d_*?"L 2 3 1
ence ﬁﬁvz ¢ dy z_E(/A —3@+3)—?+§;§-
Moreover we shall find
5 2.3.5.6 2 30 10 348 120
H+i5mtis e s =t o o=t — g 40) 4 (247 ) =T, L (VIL)
whence j‘j‘ bz‘(l—v)e"’”dvdz— (‘U’_O)2+3# <1+ ) 15
. 0 o/0
We shall also find
2.3 2 2, 3 4 x’s
{1+4w« R e 5 }— 75 (wa*—20)e +5(pat+22). (VIIL)

Hence 5:0(1 —v)e’*”dv:}—h—g(y,—-2)s"+?(‘w—|—2).

These three last integrals can be obtained by ordinary integration. I have intro-
duced them here partly for the sake of system, and partly because we shall require
the series which they represent on other occasions.
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We may extend this process, by performing operations with respect to the quan-
tity (w). Thus we may operate on any of the integrals we have obtained by such a

d . . . epe, . .
symbol as F(g;), where F is any rational function ; and if it is an entire function, we

have merely differentiations to perform. If it is a rational fraction, and the factors
of the denominator are real and unequal, we may decompose it into simple rational
fractions, each of which may, in its turn, be transformed into a simple integral. If
we apply this operation to any of the results we have obtained, we immediately have

a definite integralyy..Pe"QF(Q) dv... dd... expressed in a series of single integrals,

where the integrations are performed with respect to (), and (x) may be taken be-
tween any limits. But () must in no case pass through zero, as the definite inte-
grals, on which we operate with respect to (»), cannot be found for that value of w
by the processes we have been investigating. There are many other operations of a
similar nature, which it is easy to imagine.

I am now come to the second part of this memoir, the investigation of those new
methods of summation, and of the definite integrals corresponding to them, to which
I have before alluded. Let us consider the series

z z? 8
HetaprnaetEEr e Tas T

where (3) is an integer. The following integral is known :

an
a cos 6
y d & cos (a sin é))cosm)__2 T

1 1 " . .
ITﬁz—Z{ﬂ-—‘j‘ df £*=° cos (@ sin §) s#~ .
w -

Hence we find for the sum of the above series,

0
y df e**°cos (a sin §) £~ Dio ;o

wof—1

Next let us consider the same series when (8) is a fraction. We have

T ) T(n+1)
e Tt

T —
———— . %j; j_”dédv V"(1—v)#~2¢"*% cos (@ sin 4) ",

except for n=0, when

2;;}_6 1yj‘ dfdv(1 —v)P~*¢** cos (a sin 4) ;

and we find for the sum of the series,

ﬁ.—]_ 1 vad®
=L j f (1—0)P~2 "0 cos (a sin 0) s+ dddv— 1.
0 o/ —m '
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The following are instances of the application of this method obtained by using
series L., III., IV. :—

j.l f" dodz (1 —x)¥ ¢4+ cog (au sin 6) cos (ux sin 0)
3 +8 3 ﬂ{(Q{/J\/;& 1) 82"“/;-|- (2/"‘\/0"'}‘1 —-2#«/(1}
(‘15’ j’ j‘ aacos0+ﬁcom+fwzcos(9+q§)(l —U)%(].—z)ﬁ'
cos (z sin 0) cos (6 sin @) cos (;wz sin (8- qa)) dbdodvdz

27w
= (3 i 2) 8

2n% -3V
= 6
81 (uaf)s

{6/mB—2)00s L3 S af—n/3 53/ p+2)sin 2 )

5‘ 5" db dv v(1—v)~ : 2 g t)eosd 05 (204w sin ) cos (e sin d)

wxﬁ

=;Q—I—ﬂ§ (\/a‘w— 1)22“@—-5——:2 (\/@—I— 1)5”2“@.
Again, we know that

+T(3+1) ,
zﬁ+lr‘(5+”+1> (5'2—‘—% 1)

u

5‘2 df cosPd cos nd=
0

from which we may deduce the following:

™

5’“2 cos®+~2Y e(a-b)iedg_?’r_(j‘ib 1)

Qutt—2gTh

2

Now consider the series

alfet+1) a® | ala+1)(a+2) a°
H’ + s+ T2 pE+nE+ T2 T &0

where () is greater than 3. Then by the above formula

%Eiz; 2 el I*(“_B_i_l)j\ . dg COSMJn_lg 8(2,3—»zx+n—-1)i6;

N(

and we find for the sum of the series,

i3

2o-! T (a—B+1)| ® dd cos*—14 g2~

w Pot ——
2

2 cos 8 890

In like manner we can find the sum of the series

‘»

ad | alzt1) u(u’+l) 22
+5 5t ey e e T &

where o is greater than (3, &' than 3.
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The use of this integral will give an important extension of the method I have
employed for expressing the integrals of differential equations by means of definite
integrals. For in erder to the success of that method, it is necessary, as is shown
in my paper in the Cambridge Mathematical Journal before alluded to, that the
magnitude of the factorials (if any) in the numerator of each term of the series to be
summed, should be less than that of the corresponding factorials in the denominator ;
whereas this integral enables us to sum series in which the reverse is the case. 1
shall now apply the series, whose sum we have just found, to the evaluation of definite
integrals, using series VI. and VII. Hence

1 (" . 3
f §2 dbdv v(1 —v)* cos®d " cos (2uv sin J cos 9+9):4~7r71(y,2—3,w+3)e’*——‘4 7:4+8_1r_2
0 J-Z “ [ [

\
j j‘ _ dodv v(1—v)° cos*d ¢ cos (2uw sin 4 cos §-24)
L)

3 T 3w
=g —2)% +ga(e+3)— g
By a process similar to those used above, we find

2 2.3 it
5. =155 gt
~.3. ~.3.4.1.2
2
___§_+_2< 22— x+2)a"” __g_( 2372-]—9 x+2)g—p.z
= T AT g 14 Sl +f"4w4 14 e .

+ &e.

Hence j‘" j‘—i dodp geos®+2ucostes 040 cog d cos (« sin @) cos 2(¢ +w cos d sin (0+¢>))

=— gt iga(Ra— 20/t 1) € g et 0 1)

The following formulae are found in CreLLe’s Journal :—

T Ta+b—1) =
cos” 20 cot’d cos addf==2T"""). T
5; NN ORI

T , Ta+b—1) = .
cos*™ 20 cot’d sin addd—= . H

i T@r(@) . b=
2

m

yZ cos™0 cot?d gtdo="10Tb=1) = ja-ng
0

Talhs  snbm.

I'(a+b6—1) Tbsin br —i(1-5)T 3 o820 cotd s°dp.
whence we find o= 2
0

In this formula we suppose (b) to be less than unity.
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Now put b=%, then

1
r(e3) :
2 1 i 2 N .
_.___-_1——_5'!2 y cos? 24 cot? 4 ¢ ;
v 0

T'n+2 1 = T 1A
___.(___t__z_-——_.__._e 1 5‘2 cosn-l-% g Cotrg Eet(n"'—g)’
0

whence we find, from series 1V.,

2
+__‘M_|_ —.-2-+ &e.
2 ‘2 2

SIE

3 _in " st . .
=5t 4 cos?d cotid e2 6% cos sin ¢ °dpdl ¢+°° 0P
2% 0 . ’

i S . =
since 2% ="V 24 V2
E} 3 3

) we have

m

5‘ 25" costd cotdd £°*® cos (sin @)+ < ¢+ dody COS{{L cos 4sin (449) +5—29+2fp}

0

™ e
Let us again consnder the series

(4+1) 2* | afat])(@+2) o°
14ge 45611 T e 1) B ) Lo T&e

Then making use of the integrals

I‘(“_I_n) =y e-—zza+n—l dz’ and I‘(“+n)=ka+ne—7—;§(u+n)j' ehiz’zoﬁn—ldz’
0 0
where (k) is a constant quantity, we find as the sum of this series,
F’e _.E_ ® ® o—1,— € I‘Z-fiv
Tu 2”5; 5_wdvdzz AT

I‘ﬁ € i [° R L . gt thaz
— e o a—1 hiz —_—,
and I‘OL 9 h ¢ 2 5‘—0 f—w d’l)dz . . (1 + w)ﬂ g 14w M

also when (8 is an integer, we may find the following expressions as the sum of the
same series :—
‘ .
—lg— ccosd (B—1)i0
p“ g j‘ j‘ dédz z*~'¢7% cos (c sind) g% ¢#1" £

I'g 1 )
I‘f weB—1 ‘_-—"“ f dbdz =*~'¢"* cos (C sin g) goeosd c(B=1)i

MDCCCLYV. 2A

zhzz’e“’

and also
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From hence we obtain, using the first of the two integrals and the series
2.3 u?  2.3.4
1+4 tis1eTise 1Hz gH&e.= 8(5“"‘2)5"‘*' s(f"'l'?)

a0

r _ dfdze* =% 3 cos*) cos (wx sin 0 cos 044 —tan (9)__— p—2)¢ "+ (y,+‘>)
and also

§ ‘f dAdze”°°59+M_zZ°sg—z z cos(c sin d) cos ([M sin 9+ 30)
0 -7
CB 3
=%(#_2)5»+’%(M+2).

The second integral will require in its applications, that we equate possible and
impossible parts, in other respects the results will be analogous to those we have just
obtained.

There are one or two other methods of summation which I shall briefly notice
We see at once that

po et 1 @ el
I+5+13Hieg 7 Hhe=—""

Now if (r) be any integer,

L L)——52 dd log, cos 0¢™™.
: 5
1 1
Hence 14+ AR %+1 X ’;}+&c —~§ ddlog, cos 0 &% <"
-1
Whence y ddlog, cos de+**% cos (w sin 2 4—2 0)= % z o
The integral 5:) fsin d cos™ (9———2{_—1
can be employed in the same way
E 1
Again, j:) cos"dcosn 0d0_2 g’
whence

—2_ .
j L dlcos g 0=
3
R . ,“2 1
Hence using the series 141 -Eﬁ_1

e “
24+&' C —E T

=05
2 2 '"2" 1-2
we find

§ . j‘ _ didp cos ™ gkt eorteosder20-0) cog (yf“ sin(20—¢) cos®*d cos p+tan p— )
~rJzx

—_ " (eu_i_gw)
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There are some other definite integrals which we may use in the summation of
factorial series, as

n(n—1)...(n—r+1) 1

j;2 df cos™ cosnd cos 2r0=j—;

1.2.3...r on’
i df sin?) __(en—1)(2n—38)...3.1 =
—_— =9
, (1—2acosb+a?) 2n(2n—2)...4.2 2
_fl der='(1—2)f' 1 TaIB
A (@4ap+t T aP(1+a)* T(a+p)
" dx _ Y 1.2.3...m+n—2
J_m (a+z‘x)m(b-—zx)n—2"’(“+b) 1.2.3..m—1.1.2.3..n—1’
1 1
j s P§P<n—§>’ 1
{@+a@+b)y x+b)} Tn (Vat Vo)V

and probably some besides.

I shall now offer a few observations on the nature of the integrals we have been
discussing. The preceding investigations appear to be equivalent to a solution of
the following problem :—“To find the definite integrals, whose values can be deter-
mined in finite terms by the solution of linear differential equations with variable
coefficients.” Itshould seem that the definite integrals, which we have considered in
this paper, are the most general ones of any importance, whose values can be found in
this way, for the following reasons:—If we expand any definite integral, which is a
solution of a differential equation, and its equivalent in terms of the principal variable,
and equate like powers of that variable, we obtain a series of definite integrals of a
simpler kind, each equal to a fraction whose numerator and denominator consist of
factorials, and can therefore be expressed by the products of Eulerian integrals, or to
the sum of such fractions. Now I have employed all the more important definite
integrals of this class, which are yet known, in the summation of the series which
satisfy the differential equation

dn dn1
(ax"+4ba™") t—l—;,-}- (a2 4-ba) dxn_yl +&e.=0;

and as the properties of the Eulerian integrals have been much studied, and the
integrals whose values are dependent on them consequently well known, it is pro-
bable that the definite integrals, which we have considered in this paper, embrace all
the more important ones whose values can be determined in finite terms by the solu-
tion of the above equation. Were we to employ equations of a more general form,
we should find that the successive terms of the series which express their solutions,
would be given by equations of finite differences, in which the members equated to
zero would each consist of more than two terms. Consequently we should be unable
in the general case to sum the resulting series by means of definite integrals; and in
those cases in which we might find this possible, the integration of the differential
242
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equations in finite terms would be practicable in very few cases. The following
method of determining a well-known definite integral is here added, to show the con-
nexion between previous investigations relative to definite integrals, and those given
in the present memoir.

r
We know that 1 —r’+75—1- 2 3+
_(@)21, (et 1.3 (25 1.3.5 B
or = e Ties4 9 To.3.4506 & T&C =¢
. o , 1.3.2n—1 /7

Hence remembering that j‘ dz ™" ="*—27,L- g 7

0
we find y # cos 2rg=—" ‘/” e,

[}

I shall now enter on some investigations connected with Lacrance’s theorem.

Let 1—y-ay"=0 be an algebraical equation. Then LacrancE’s theorem gives us
the following series :—

yr=14m +_L"i2g_)

If we apply the usual test of convergency to this series, we find that (r—1)« must
be less than unity.
Then we see that

2_I_&c._l_m(m+m-—l) (m+1n.7’2732.)...;2..(m+n(r——1)+1)“n+&c.

o =1 (et 2r— ) R IR
(m+nr—1) (m+nr—2)...(m+n(r—1)+1)

+ 1.2.3...(n—1) e

T'(m+ar)

Now (m—+nr—1) (m+nr—2).. (m+n(r—l)+1)_. Tatar—1)11)

— a+b—2 x )
wherefore, since —Il(%-%b.j)—l)zg 5‘ ? cos®+=2( gla-viv gy,
.
we have (m4nr—1)...(m4n(r—1)41)

T

e ks

=2"’ nr T(n)§2 COS™ =1 gmatr=2)+1 gy
T -

2
2m+nr—l

w T

— y 5‘2 dgdz cosm+m~—-10 e(m+n(r—2)+l)i9.zn—le—z.
™
0 ¥V—-=

w

(m+3r—1) (m+3r—2)
1.2

Hence we have 14 (m+42r—1)e+ o4&,

2m+r—

y y dgdz cosm+r—-10 52 az cos ecos(r—z)o—z

cos(2"az cos’é sin(r—2)+(m-+r—1)0) ;
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us
00 —
5‘ 5‘ 2 dddz cos™ =1 g2 azcos deos(r—2)0-=
. L
0 —_.

cos(2'az cosdsin(r—2)0+(m—+r—1)8)= ,,,::_ d. d?;

Let r=2, then we have

2 dicos™ fcos(m+1)0__27 41—+ T—c|™
1—ccos% “m de P >

3

2

where (c) is of course less than unity ; an integral given by ABEL.

When 27« is less than unity we can always integrate with respect to (), but may
obtain a single integral more simply by proceeding as follows :— ~

(m+nr—1) (m+nr—2)...(m+n(r—1)+1)
We have 1.2.3..n—1

2m+m‘—

j da cosm+m-—-lo E(m+n(f—2)+l)zo

consequently we find by summing a geometncal progression,

7 mret g ] €O8(m+r—1)8—2"a cos’) cos(m+ nVO__ 7 dy”
y n df cos 0{1 —2"'a cos’d cos(r—2)8 + 2" a’cos™0 [~ 2™ 'm da

When r=2 this result coincides with that last obtained. We may obtain a very
general result by applying Fourier’s theorem to the series of Lacranak and Larrace
as follows :—

If w=f(y), and y=xz+x9(y),
we have u=f'(z)+{¢(z)f’(z)}w+3§{¢2zf’z‘}% + &e.;

=0 () (2) (P (2 2V s {9%(2) F1(2) g+ e

Now we generally have F(z)—-j‘ ( cos a(z— ') Fa'—— . dz
whence r@fe=(" | s d“zle

! 1 dd. d
and G @S @ ={ | ey £ S

Hence substituting in the above series, we find

__.y 5\ w(z—z’)¢(zl)f! (ZI) euxq&(z’)z

Consequently we find the following definite integral :

iij_idmd@(z’) /(') cos “(z_ S <p(z’))=

dtxdz
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Again, from Larrace’s theorem, we have
o ®© ) du
j_w _wdocdz’ cos a(3—2'+20,0,2')0,0,2f 0,5 =27 e

where u=fy), y=0.(3+20,y).
These theorems of course suppose the series from whence they were derived to be
convergent.

As examples we may take the following.

Let y=1-4axy’,
then jw " dudz cos e(l—z+23°)2
df 3//1 11 /(1 11
=2%{\/ ('27,»+\/ (4—_.%2_27—943)> +\/ (z—x—\/ (z;—mé) ) }
Also let y=1+4a,
then j‘:j‘:cos (1l — ' +ae” ) dudz = 12_”?: )

which we may modify thus; by eliminating ()
y j‘ cos a(gy—l)ez"(‘z_l)ey>ezdwdz= 2’
—00q) — 00 Ey 2_y
Analogous methods apply to series involving BErNouILLI’s numbers; thus we have

A X Bl 2 B3 4
=124 Dl O3 i &e.
=1 1 2 1.2 1.2.3.4 +

B2n—1 1 1 1 1
P(2n+ 1)222n~1”2n<ﬁ+§‘2}+:@;+ &C)

1 1 2n—1
1 S <log5z) dz .

= 92n—1] 9y 0—“—_“1 p—y ’

1. 1
z’ "S dz sin (577 log, ;)

x
s”—l+§-l=; 0 1—2 ’
Usin (eloge)de  z 2mg1 1
h (] ¢ —=_. —_——
Hence we hav . 1 3 1 s

In this formula () must lie between 0 and 1, as it is necessary for the convergence
of the above series that 2 should be less than 2.
I now enter upon the consideration of the processes I have before mentioned for

reducing multiple integrals to single ones. We easily see the truth of the following
equation :—

I A - W + &e.

S R L + &e. —1
“Ti2iT1.23.4.1.271.2.3.4.5.6.1.2.3 + <&~ 1
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1
9 i(z+2") ! "
Hence we have Ty . _ € e TRt
2% 27" J-w 1+zz 1+zz)
€2i0
— o cos 0 3 o
—wj‘_"dé)e cos (e sinfd) ¢ " —1.
kg mw
E .
Hence | grenienPes@*9 cogTi ) cos™ . dddp,
"3 VT3

cos (g cos 4 cos ¢ sin (0+9) +g+qo— (tan d4-tan ¢)>

4 — . cos 20 sm26 2
= ‘2/7"‘ dos* 0 cos wsin 0. ® cos" g =T . (A)
ﬁ EQ

But we inay effect these reductions systematically by means of the following pro-
position due to M. SMAASEN:—

If a,+a, x+a, ¥*+a, ¥+ &ec.=¢, (),
and by+b, x+4-b, 2+ b, 2*°+&e.=,(x),
then a, b,+a, b, x+a, b, 2>+ &e.

=3x |, W00 +0. ) @) 0.

M. Smaasen has also proved in the same paper, that if the sums of the three series
a,+a, x+a, 3+ a, *+4&e.
b,+b, x+b, 2>+ b, x*+&c.
¢+, x4c, ¥+, ¥+ &e.
are known, we may determine the sum of the series
a, b, c;+a, b, ¢, v+4a, b, c, 2>+ &e.
by means of a double integral, but we shall not want this in what follows.

2 23 4/;'+E—4/.;
Now 1+12+1234+125456+&c“ 2

2
b gy .=

pla?

X .
consequently 14 e +&e.
1.12_22 _,_'_ 3 12 22 24
2 22

w T N - = o
=3 df’{e e Mﬂz e z}{ew"’+ew“""}-
0 o

Now e“m-l--e‘ Ve +¢ ”"w-l-s Cad
»/;cosi - .0 -Vicosi - . .
=2¢"""3 cos (a/@sing ) +2¢ = cos (4/wsing );
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” ™
2 PR 3

. j‘ "y _gdeortenentte 06g-3 g cos™' p dédp,
~3vY"3

cos(g cos 4 cos ¢ sin (0+<p)+%+¢—- (tan 4+tan ¢))

=4 :: 7:5"’ dé{ (%3 +-¢~2) cos sin g}{g“m” cos (wsing)} . . . (B)
0

Hence we find, by comparing (A.) with (B.),

™ cos 20 in 2 0
5‘ dd ¢ cos (w sin 0){25 » COS T—(e°°si+e’°°s‘) cos sin 2} 7.
0 .

We have already proved that

2 2.3 22 2.3.4 2°
4w+ tis.6 7o T&e

Hence 1+§-—2-+g:—6;-§§+&c.
12 12 2
=x—4(w+2)+ﬁ(x-—2)e”—§,
d 1 G &e. =,
an +urtig 1 2. 3+ C.=¢
Consequently the theorem of M. Smaasen will give us the sum of the series

3 pr 3.4 ph? 3.4.5
l+2 5. 1+2 3'5.6.1. 2+2 3.4 5.6.7.1.2.3+&c

by means of a single integral, and we obtain

™ 71'

y , dfdp 30 2 <s0=9) 095%) cos’p cos{ 2w cos 4 cos @ sin (I—@)+ tan p— 59}

= éf"dé{ 6(cos 3042 cos 44) +6¢*? cos (34— sind)
0
—12¢°*’ cos (40— sin 8)— cos 4}¢** cos (w sin 9).

The fundamental idea of the preceding calculations, as will be readily seen, is as fol-
lows: toreduce every term of the series proposed to be summed by means of definite
integrals to the form of the general term of the series whose sum is given by the
common exponential theorem, and then to find the sum of the whole quantity con-
tained under the signs of integration by means of that theorem. The factorials in
the numerator of each term may be taken in any order we please relative to those
of the denominator, provided that the same relative order is observed in every term
throughout the whole series; moreover, we may use different integrals to express the
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same factorials, so that we can deduce the value of many definite integrals from one
series.

I shall now give an example of the summation of a factorial series of a somewhat
different nature.

Consider the series—

z a? ‘ a8
1+ + et (a®+2%)(a*+ 4% + (a*+2%)(a®+ 47) ... (a®+ 2%%) + &e,
) I . 1.2.4...2n _ea?r—e"a?"_
we know that 5?%5 (cos &) T @)@+ 4D)... ([ + 2 a

Hence by substitution the above series becomes

" zcos?f , a2costf
{H' 1z Tizaa Tt &

52—5 K}

_ % d@&"o{é xcoso+e—~’wcos0}
52-—5 2 5‘

There are other series of an analogous nature which may be summed in a similar

manner : the object of introducing the above summation in this paper, is to point

”

out the use of the integral “"(cos ¢)", when impossible factors occur in the deno-

ml:i

minators of the successive terms of a factorial series.

In the ¢ Exercices de Mathématiques,” Caucny has proved that if z be a quantity
of the form g(cos i sin @), and zp(z) continually approach zero as ¢ indefinitely
increases whatever be ¢, then the residue of ¢(z) is equal to zero, the limits of ¢ being
0 and (o0 ), and those of ¢, # and —=. From this theorem he deduces the sums of
certain series, which I shall presently consider ; but must first give certain results
which will be useful in the sequel.

Since j;ms‘“’” cos 2zdr= 2‘:/"52‘%
e-%=2~/3; j:e‘g? cos xdx.
Again, since ﬁof—wz% gzl;’
we find g%_—_;f’_r j‘j ;"gf'zdx,
1 -1 x/ a
whence we have ge—g o= f dx(s*~— cosx)e” T

MDCCCLV. 2B
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The first series we propose to consider is the following :—-

]. 1 ™ e\ g
5 wx? w|[e?—e ? R
- an - +aﬂ & +aﬂ 5 tan Tg+&e. =15 ( m -w_) —tan® 3 (-
"”"E@ ) E‘E % 2 ¢ te

Put 72*=p, then this series with its sign changed may be resolved into the three fol-

lowing :—

2* ) 22 1 0 2 1 e
S0+9 A0t 127 31403 555 1475 AN g T&e.

% b ® Lo e, ® 1. e
1=zt +i3 —)3 tanz"5+ 155 5tan 5o +&e.
2

4 1 z 1
tang— 4(3+w) gtanzo—1G6+4)'5 ta“5 Lt e.

z
_4(1+w)

The general terms of these series ave respectively,

22

1 4
S{@n+1)7 427 2n k120 2@+ 1)

z 1 4
@t )=z} 2nt1 B03ETT)

z 1 ¢ e
T4{(@n+1)—2} 2n+1 ang 2(2n+1)

These terms become after transformation, since
“de( =) 1, a
—m =g tany
0

g7 —g™ T T Q 2

2 d ‘(2% Duol dz * (‘1} ) (2n+1)v2 1 dS l 1
U e'— + sin rU S —— dv & CcoOS Ve~ 57 o .
2 0 0 (5 —E€ ) VWgZ % 0 w g‘ $

L dz (2n+1)v? ds ~11
—(2n+1—-2)u R Al L £ on
—|-—|5:) du ¢ j; —-——————( = ’”‘)4/ p _wdv(e —COS 'v)e P j‘ v_log -s.s

dz @t ("1 ds 31
. —(@n+1+2)u _ — —_ [3) inlnawrpeoans —. 8
j‘ du ¢ (E,,z Ve ~m,dv(s COSV)e™ e ) l og,~ S5

Each of the series is consequently reduced to a geometrical progression; wherefore,
summing the three progressicns and taking the aggregate, we have

BRI

S ' —cosv)e iz log, ™ (2 sin gt £ <) dododudz

— o)
0 (=) Va1~ E*“"J’Tzsg)
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Next, let us consider the series
1 1
2 2 3 23
2 Y .f
T cot zx +___ cot —2—+@ cot -3—~+&c.

1 z 4
x? 4 2 9 22

_E N wa+e—1r.z' 2
_—8{cot TL— (me"w-—s—w) }
Let each term of this series be transformed by means of the integral

® ge=lgz
j‘ = cot ar,
o 1—z

0 00 00 1 2 .
S S S S g log, b  (2.5in gu e — =) ddoduds

2

(z—2%) log‘% 2(1—e " 4oz 5)

5 E1rx+5—1m' 2
=7r?{(—,,;,————— —~cot*zx }+
£

2

and we have

0 L]

E"ﬂ'l’

1 1
. 1 wa? 3 wa? 5 wa?
Again el —_°2 _secd——sec——&c.
gaitl, IS R M T L TR 17
a? 9 a? 25 a2
——W—{ 2 )2 Sec27ﬁ}
16 Ei;ﬁ_{_s_"?" 2
Here we reduce each term by means of the integral
© dz(saz_‘_ E—az)_l E .
o EFAeT™ T2 secg>
and we have
© 0 % 1 92 1 .
S S S S (" +cos v) e~ dmate log,’%;(Q sin 2w -+ 6% — e~ dsdvdudz
- oty '
[ 0 —-x oo (sz_l_s—wz) '\/2’(1+! i 32)
”Q{se(? - ( 2 >2}
—— T — e _mz .
4 2 2 4e 2
1 1
. 1 2 wa? 3 xz?
- 0Sec — cosec — —&e.
Also, since — cosec 72’ —— cosec = +w_2_— 5 3
TR 4 2* 9 a?

] 2 2 2
=§ (m) — COSeC 7 ps

we have, transforming each term of the series by means of the integral

eozoc—-l pa
j; 13, —7cosecer,

2B2
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oo ® 0 1 2
S S S S e " moge log, -15-_ (2 sin zu + e — =) dsdvdudz
o Jo Jow Jo 1 —y——

(z4+2% log22(1 46 dlogez s)

5 .2 2
= 7r§{ cosec’rr— (e_"’“'—;—e:;'_') }’

Let us next consider the series

sin § +281n220+3sin30+& .__

Eoz(-n' ) E-—a(r-—@)

1+4+a? " 2240 * 32442 g — g
The general term of this series is "ST "f ;
-4
also, we have L »E_M sin ezdx
3 n@_l_a‘ﬂ 0 9
— et —ox .t . —=?sin §
and ¢~% sin 0+4¢7% sin 2046 sin 30+ &e.= e s .
T + + 1—2¢~%cos §+4e—2¢
Hence 5' ® efsinazdz  __ w gm0 —gma(r=0)
b 1—2e—%cosf+e2% 2sinf  em—gor
In like manner from the series
cosf , cos2) , cos3f o =0 pg—alz=0) 1
1+a9+29+a2+39+ 2+ &e “"" o —g—om  2a*
EOS ez (e cosf—e2%)dz _m 2O femam=0) 1
R —26%cosffe2% 2  gTe—gom 2a
Let us next consider the series
1 2 3 1
E'lr___E—-7r—E21r___,'_=—21r_|L531r___5—3')'1‘—-. &C. —Z,,;.

We know that j’“’ singz.dz_1ee+1 1
0

gl 4 @—1 2w
. j sin2pradz_1 1 1 1
0

—_——)

g4 ] - _2- 1— E-—2n1r 4 4nr
1 © sin 2nwz.dz
— e — ~—nT |
Emr_&~mr‘_'25 j; 521rz_1 + 27271'

Now « sin —a? sin 204 2° sin 36— &ec.,

__ asind
—1+2xcosf+a*

From whence we have x sin §—22” sin 2-32° sin 30—&ec.

____xsinf(1—a?)
(142 cos §+a?)*

It is hence evident that

* dz sin 2wz &" 1
i 2w
=2¢"(e l)j; (2™ + 2e™cos 2wz + 1)2(92"’-—1)—‘_2 ("+1) 2-+-2'7r 1’

dz.sin 2zz _ 1 -1
Y, (42emcos 2wz 4 1)2(F— 1) T 4e™(e"1)%(e"—1) | 2w —&r
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1 24m+l 347n+l .

Again, we have — s —=w e mm—&e.=0.

E'l'_ E—ﬁ'

We must transform the element »*»** thus:

1 RN 1\ 1 1 logez 1\
am+1 o n pul —— c n — —
nm _I‘(4m+1)j‘ow (logm) d‘x_l‘(4m+1)j;' w(loggw dx.

Acai logr Vn g i
= loga .
galn, g n 24/7“ log‘,z‘j:mg 8,
Lastly, V=22 S "oy,
o V; A

.. . I 1
Hence, combining these integrals together, and substituting for jw— = as befove,
. —E ‘

we are able to transform the above series into one which can be summed by the ovdi-
nary rules. The resulting definite integral will of course be equal to zero.

Caucny has applied the methods of the residual calculus to the determination of
the sum of the series whose general term is

N __ =N
(_l)n_ls 5 .ncosna
g e g — T n4+c4

. . 1
in finite terms. We may transform the element 7ip A thus:

1 LY
e +c4_.625; ¢~ sin ’zdz.
. - 2 (-2
Again, e = V?j ¢ #cos 2nz.
7wz Jo

Wherefore, combining these integrals, and transforming the other elements as
before, we may find its sum by means of definite integrals. We may resolve ;4%4

into its partial fractions, and then find the sum of the series, which would be
simpler.

The transformation of ¢~ which I have used above, is due to Professor KuMMER,
who has applied it in the seventeenth volume of CreLLE’'s Journal, in a paper to
which I am indebted for many ideas relative to the connexion of definite integrals

with series, to the expression of the series
14-94-¢*+¢°+ &ec.,
and others of a similar nature by means of a definite integral. The integral

®sin puz.dz . . . .
j =% was first applied to the summation of series, whose terms involve elements

521rz’__1
of the form iyt by Porsson in his Memoir on the Distribution of Electricity in two

electrized spheres, which mutually act upon each other. He proves that the cal-
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culation of the electrical arrangement depends upon the value of the definite inte-

gral,
o sin cz.dz
o (€™ —=1) (a+bsincz)

I mention this on account of its analogy with the definite integral

© dz sin 2%z

o (" +2¢"cos 2mz +1)? (7 —1)
whose value is found above. The principles contained in this paper will enable us
at once to find the sums of the series

a3 z% P
Itet+i5+1o3 i3 at&e

tand. tan20 tan 36
1+=—+T5 +is3t&e

0
sech sec § sec ';3'

and of many others which can be imagined, by means of definite integrals. The
definite integral of PoissoN given above occurs in the solution of a functional equa-
tion; and it is probable that series similar to those I have been discussing in this
paper, may be useful in enabling us to express the solutions of other functional equa-
tions by definite integrals.



